图像处理中的梯度和导数如何求?(Robert算子,Sobel算子,Prewitt算子,Laplace算子)
梯度的求法是多种多样的,根据不同的处理需要选择合适的算子(模版)。
1、水平垂直差分法
$ g(i,j) = |f(i,j)-f(i+1,j)| + |f(i,j)-f(i,j+1)| $

2、Robert 梯度算子
$ g(i,j) = |f(i,j)-f(i+1,j+1)| + |f(i+1,j)-f(i,j+1)| $

3、Sobel算子

垂直方向

水平方向
4、Prewitt算子

垂直方向

水平方向
5、拉普拉斯算子
$ g(i,j)=5 \times f(i,j) - |f(i-1,j)+f(i+1,j)+f(i,j-1)+f(i,j+1)| $

二阶差分的推导
对于数字图像 $f(i,j)$,利用差分方程对x和y方向上的二阶偏导数进行近似:
$$
\begin{equation}
\begin{split}
\frac{\partial^2 f}{\partial{x^2}} &= \frac{\partial(\Delta_x f(i,j))}{\partial x} = \frac{\partial(f(i+1,j)-f(i,j))}{\partial x} \
&= \frac{\partial f(i+1,j)}{\partial x} - \frac{\partial f(i,j)}{\partial x} \
&= f(i+2,j) -2f(f+1,j) + f(i,j)
\end{split}
\nonumber
\end{equation}
$$
上式以点$(i+1,j)$为中心,用i代换i+1可得以(i,j)为中心的二阶偏导数近似式:
$ \frac{\partial^2 f}{\partial x^2} = f(i+1,j)- 2f(i,j)+f(i-1,j) $
同理可得:
$ \frac{\partial^2 f}{\partial y^2} = f(i,j+1)-2f(i,j)+f(i,j-1) $
进而推出:
$ \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = f(i+1,j+1)+f(i,j)-f(i,j+1)-f(i+1,j) $
下一篇 基于SIFT特征的全景图像拼接
页面信息
location:
protocol
: host
: hostname
: origin
: pathname
: href
: document:
referrer
: navigator:
platform
: userAgent
: